Financing the Gig Economy

${\rm Greg}~{\rm Buchak}^1$

Presenter: Xiangqing Wang (WISE), Jifan Wu (CHOW)

May 21, 2024

¹Graduate School of Business, Stanford University

1/60

Outline

Introduction

- Institutional Background and Data
- 3 Reduced-Form Estimation

Structural Model

- Ride-Share Supply
- Ride-Share Demand and Equilibrium
- Estimation
- Counterfactuals

Discussion and Conclusion

Outline

Introduction

- 2 Institutional Background and Data
- 3 Reduced-Form Estimation
- 4) Structural Model
 - Ride-Share Supply
 - Ride-Share Demand and Equilibrium
 - Estimation
 - Counterfactuals

5 Discussion and Conclusion

315

-

Background

- Firms like UBER, LYFT, AND AIRBNB have created convenient markets for households to sell capital services with their **durable consumption goods**.
- Individuals could joined the so-called **gig economy** in droves as drivers, delivery people, and hosts.
- Key distinguishing characteristics:
 - Gig economy workers provide and finance their own physical capital
 - Households can use one asset for two purposes: durable consumption and capital income
 - At the cost of requiring that households finance the capital
- Ride-sharing drivers are largely financially constrianed.

This paper: figure out the importance of financing in gig economy

900 EIE 4EX 4E

Main Findings

Reduced-Form

- Entry leads to a 1.6% increase in new auto sales, a 0.60% increase in employment, and among low-income individuals with ride-share-eligible vehicles, an additional 2,000 miles driven per year
- Financing: auto loan originations increase by 1%

Main Findings

Structural-Model

- Rideshare entry led to large welfare gains of roughly \$25 billion annually among potential drivers and roughly \$30 billion annually among riders
- Counterfactually eliminating the need for financing leads to ride quantity and welfare increases on the order of less than 1%
- Counterfactually without finance, equilibrium ride quantities would be 40% lower and prices 90% higher, and only higher-income households could participate as drivers
- Counterfactually allowing car owners to hire minimum-wage drivers to use their cars could reduce ride-share prices by 12% and increases quantities by 7%, leading to aggregate welfare gains

Contributions

- Highlights and quantifies important costs and benefits of ride-share entry
- Help explain why technologies allowing durable consumption goods to be used to produce capital income (such as Airbnb) have succeeded, while other seemingly similar technologies that do not (such as WeWork) haven't succeeded
- Hightlights the important role of **consumer finance**
 - Financial system was largely effective in allocating physical capital
 - Allowing car owners to hire drivers to use their cars leads to aggreagte welfare gains

Related Literature

- Household and coporate finance (Equan et al. (2017), Benetton and Fantino (2021), Benetton (2021), Buchak et al. (2018a), and Di Maggio et al. (2022), Campbell (2006), etc.)
 - This paper: focus on consumers who finance the capital good for production
- Pinancial system for growth and finance for productivity (*Mian et al.*) (2017), Kaplan and Zingales (1997), Jayaratne and Strahan (1996), Hsieh and Klenow (2009), Lenzu and Manaresi (2018), Buera et al. (2011), Midrigan and Xu (2014))
 - This paper: highlighting the importance of ex ante factor misallocation when a disruptive technological change is introduced that impacts how capital can be used
- Impact of ride share platform (*Cohen et al. (2016*), *Cramer and Krueger* (2016), Calder-Wang (2021) Hall et al. (2017), Benjaafar et al. (2022), Cook et al. (2021), Cook et al. (2019), and Chen et al. (2019) Barrios et al. (2023))
 - This paper: on the benefits of dual asset use and consumer finance

Outline

Introduction

Institutional Background and Data

Reduced-Form Estimation

4) Structural Model

- Ride-Share Supply
- Ride-Share Demand and Equilibrium
- Estimation
- Counterfactuals

Discussion and Conclusion

SIN NOR

Institutional Background

- Uber began operations in San Francisco in 2010, with Lyft following shortly thereafter
- Both services expanded rapidly to other cities. By the end of 2016, there were nearly 800,000 registered Uber drivers
- Ride-share entry is not random, which may cause an identification challenge
 - Entry is more likely in large cities with high mobile broadband penetration, suggesting that these services entered areas with large potential markets
 - Vehicle ownership rates or access to finance do not predict entry

10/60

Data

For Reduced-Form Estimation

- Staggered entry dates of Uber and Lyft
- Number of registered drivers
- Auto sales, auto loans, vechile utilization (registration)
 - Vechile data is merged with physical attributes of each car
- Individual's borrowing activity (Employment) and past bankruptcy filings

For Structual Estimation

- Auto loan interest rates
- Market-level income of ride-share drivers
- Local demographic information

1 - nan

Selected Summary Statistics

Statistic	Ν	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Sales	567,874	132.367	305.593	0	10	172	34,019
New originations	567,874	126.713	166.496	0	13	186	2,889
Outstanding loans	567,874	2,266.832	2,944.440	1	235	3,392	32,959
Sales per capita	567,874	0.011	0.017	0.000	0.006	0.013	0.988
New loans per capita	567,874	0.012	0.007	0.000	0.008	0.015	0.273
Outstanding loans per capita	567,874	0.208	0.091	0.0001	0.156	0.242	0.998

Panel B: DMV vehicle registration data

Statistic	Ν	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
New registrations	74,761	279.814	584.161	0	5	305	9,789
New eligible registrations	74,761	229.941	496.153	0	3	244	9,264
Percent eligible	63,972	0.789	0.140	0.000	0.747	0.852	1.000

三日 のへの

Outline

Introduction

Institutional Background and Data

3 Reduced-Form Estimation

Structural Model

- Ride-Share Supply
- Ride-Share Demand and Equilibrium
- Estimation
- Counterfactuals

Discussion and Conclusion

= 900

-

Reduced-Form Estimation

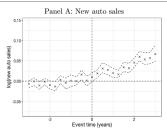
- Empirical effects of ride-share entry on sales, employment, and vehicle utilization
 - Whether ride share's entry prompted lower-income households to **purchase cars**
 - Whether entry corresponded to increases in vehicle utilization and employment

ELE NOR

Identification

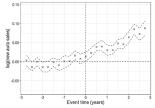
$$Y_{zt} = \beta Post_{zt} + \gamma_t + \gamma_z + \epsilon_{zt} \tag{1}$$

 $Y_{zt} = \beta_1 Post_{zt} + \beta_2 Post_{zt} \times Low \ Income_z + \gamma_z + \gamma_{Income,t} + \epsilon_{zt} \quad (2)$

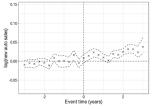

Notation:

- Y_{zt} : the outcome variable of interest at ZIP z and time t
- *Post_{zt}*: an indicator for ride-share entry
- Low Income_z: an indicator for whether the ZIP code's median income is in the bottom 50% of ZIP codes in the MSA
- γ_z : ZIP fixed effects
- $\gamma_t, \gamma_{Income,t}$: quarter fixed effects and quarter $\times Low \ Income_z$ fixed effects

900 EIE 4E + 4E


Log Auto Sales

Panel A: New Nationwide Auto Sales, R.L. Polk Data					
		Log Sales			
	(1)	(2)	(3)		
Post	0.016***	0.006***	0.004		
	(0.002)	(0.002)	(0.003)		
Post × Low Income	-	0.020^{***}	-		
	-	(0.004)	-		
Post × High Transport Share	-	-	0.025^{***}		
	-	-	(0.004)		
ZIP fixed effects (FE)	Y	Y	Y		
Qtr FE	Y	N	N		
Qtr × Low-income FE	N	Y	N		
Qtr × High-transport FE	N	N	Y		
Observations	244,153	244,153	244,153		
R^2	0.971	0.972	0.972		



By Income

Panel C: Auto sales growth in low-income ZIPs

Panel E: Auto sales growth in high-income ZIPs

< □ > < 同 >

三日 のへの

Log Auto Sales: Robustness

Vechile Eligibility

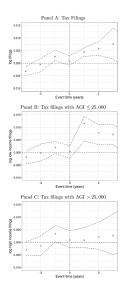
- To be eligible for ride share, a vehicle must be no older than 15 years, have four doors, and be a sedan, SUV, or minivan.
- Outcome: increases in vehicle registrations correspond entirely to eligible vehicles in low-income ZIP codes Event Study
- **2** ZIP-level income measure: wage \Rightarrow 2010 transportation worker share

Iacebo Test

• Randomly assign the dates of ride-share entry across locations

5 5 9 9 9 P

Employment


- Whether ride-share entry coincides with increases in low-income employment
- Outcome variable: log number of tax filings
- \bullet Low Income indicator: whether the AGI^2 bucket is below \$25,000 per year^3

	Log Filings			
	(1)	(2)	(3)	
Post	0.006***	0.001	_	
	(0.002)	(0.003)	-	
$Post \times (AGI \le 25k)$		0.011**	0.011^{**}	
	_	(0.004)	(0.004)	
(AGI < 25k)×Year FE	Y	Y	Y	
$(AGI < 25k) \times ZIP FE$	Y	Y	Y	
ZIP×Year FE	Ν	Ν	Y	
Observations	172,127	172,127	172,127	
R^2	0.996	0.996	0.998	

²Adjusted Gross Income

 $^{^{3}}$ The \$25,000 income level is the relevant threshold because full-time ride-share driving pays slightly below this level on average. $(\Box \rightarrow \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \Box \land \langle \Xi \land \Box \land \langle \Xi \land \Box \land \langle \Xi \land \langle \Xi \land \langle \Xi \land \Box \land \langle \Xi \land \Box$

Employment: Event Study & Robustness

Robustness

- Outcome variable: log number of total tax filings ⇒ log number of business income tax filings^a
- Placebo tests show no effect.

	Dependent variable:					
	log filings	log wage or salary filings	log business filings			
	(1)	(2)	(3)			
Post	0.003	0.003	0.013***			
	(0.002)	(0.002)	(0.004)			
ZIP FE	Y	Y	Y			
Year FE	Y	Y	Y			
Observations	72,646	72,646	72,646			
\mathbb{R}^2	0.999	0.999	0.989			
Residual Std. Error $(df = 58,820)$	0.041	0.040	0.165			
Note:		*p<0.1;	**p<0.05; ***p<0.01			

 $^a\mathsf{R}\textsc{ide}\xsc{share}$ drivers report earnings as business rather than wage income, which the IRS data report separately

Greg Buchak

Journal of Finance

May 21, 2024

|= ∽९୯ 19/60

Vechile Utilization

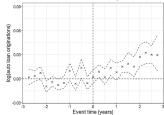
• Whether ride-share cars see higher utilization rates after entry

	Miles per Year (Thousands)						
	(1)	(2)	(3)	(4)	(5)	(6)	
Post	0.175	-0.156	-1.033^{**}	_	0.299	_	
	(0.160)	(0.282)	(0.444)	-	(0.659)	_	
$Post \times Low Income$	-	0.381	-	-	-1.518^{**}	-	
	-	(0.279)	-	-	(0.605)	-	
$Post \times Eligible$	-	-	1.350^{***}	1.186^{**}	-0.561	-0.922	
	-	-	(0.469)	(0.543)	(0.714)	(0.905)	
$Post \times Low Income \times Eligible$	-	-	-	-	2.185^{***}	2.372^{***}	
_	-	-	-	-	(0.663)	(0.866)	
$ZIP \times Eligible FE$	Y	Y	Y	Y	Y	Y	
$Qtr \times Eligible FE$	Y	Y	Y	Y	Y	Y	
$ZIP \times Quarter FE$	Ν	Ν	Ν	Y	Ν	Y	
Observations	129,215	129,190	129,215	129,215	129,190	129,190	
R^2	0.036	0.036	0.036	0.158	0.036	0.158	

• Vehicle utilization may not be an important factor in a consumer's decision to purchase a car for durable consumption

EL SQA

Financing Ride-Share Growth

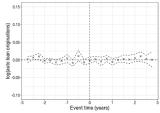

- How auto lending contributed to the real effects
- Whether **lack of access to finance** on the extensive margin inhibits gig economy growth

ELE SQC

Log Auto Loans

		3	
	(1)	(2)	(3)
Post	0.010***	-0.001	-0.002
	(0.002)	(0.002)	(0.002)
Post × Low Income	-	0.021^{***}	
	-	(0.003)	-
Post × High Transport Share	-	-	0.024^{**}
	-	-	(0.003)
ZIP FE	Y	Y	Y
Qtr FE	Y	N	N
Qtr × Low-wage FE	N	Y	N
Qtr × High-transport FE	N	N	Y
Observations	244,153	244,153	244,153
R ²	0.979	0.979	0.979

Panel B: New auto loan originations



By Income

Panel D: Auto loan growth in low-income ZIPs

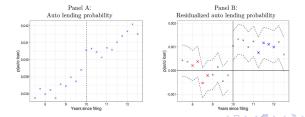
Panel F: Auto loan growth in high-income ZIPs

ъ.

22 / 60

Direct Financial Constraint and Ride-Share Growth

Borrower-Level Analysis


- FCRA requires that credit agencies remove Chapter 7 bankruptcy filings⁴ from credit reports 10 years after filing
- Serves as an exogenous variation in borrowing costs

Borrower-Level: Exogeneity & Validity

Panel A: Bankruptcy Flag and Auto Originations

$$Origination_{izt} = \beta \mathbf{I}(YearsSinceFiling \ge 10) + \gamma_{zt} + \epsilon_{izt}$$
(3)

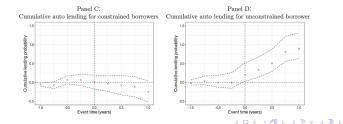
			P(Auto Loan) (%)	
Window (years)	$^{(1)}_{\pm 0.25}$	$^{(2)}_{\pm 0.50}$	$^{(3)}_{\pm 1.00}$	$^{(4)}_{\pm 1.50}$	$(5) \pm 2.50$
≥ 10 years	0.132^{***} (0.032)	0.149^{***} (0.021)	0.132^{***} (0.015)	0.136 ^{***} (0.012)	0.115 ^{***} (0.010)
ZIP-Time FE	Y	Y	Y	Y	Y
Observations R^2	2,052,307 0.228	$4,021,994 \\ 0.146$	7,799,010 0.091	$11,303,095 \\ 0.068$	17,332,333 0.049

Greg Buchak

Journal of Finance

-

24 / 60


Borrower-Level Analysis

 $Origination_{izt} = \beta_1 Post_{zt} + \beta_2 Post_{zt} \times Constrained_i + \gamma_{gt} + \gamma_{gz} + \gamma_{zt} + \epsilon_{izt}$ (4)

- $Constrain_i = 1$: filed for bankruptcy between 8 and 9 years prior to ride-share entry
- $Constrain_i = 0$: filed for bankruptcy between 11 and 12 years prior to ride-share entry

Borrower-Level Analysis

	P(Auto Loan) (%)								
	Wi	$ndow = \pm 1 y$	ear	Wind	$low = \pm 0.50$	years			
	(1)	(2)	(3)	(4)	(5)	(6)			
Postzt	0.085	0.243^{***}	_	0.093	0.255^{**}	_			
	(0.059)	(0.083)	-	(0.081)	(0.109)	-			
$Post_{zt} \times Constrained$	-	-0.316^{**}	-0.317^{**}	-	-0.310*	-0.326^{*}			
	_	(0.128)	(0.142)	_	(0.171)	(0.197)			
ZIP-Group FE	Y	Y	Y	Y	Y	Y			
Date-Group FE	Y	Y	Y	Y	Y	Y			
ZIP-Time FE	N	N	Y	N	N	Y			
Observations	1,920,408	1,920,408	1,920,408	1,073,389	1,073,389	1,073,389			
R^2	0.019	0.019	0.073	0.028	0.028	0.115			

26 / 60

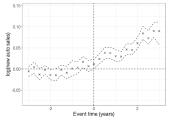
三日 のへで

Direct Financial Constraint and Ride-Share Growth

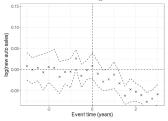
ZIP-Level Analysis

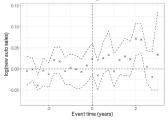
Whether variation in credit access leads to smaller real effects

- The share of consumer loans that became seriously delinquent in 2010 and
- The 2010 bank share of auto lending⁵


27 / 60

 $^{^{5}}$ Following the financial crisis, new banking regulations such as increased capital requirements and stricter supervision reduced banks' ability to lend $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$


ZIP-Level Analysis: Auto Sales



-

Outline

Introduction

- 2 Institutional Background and Data
- 3 Reduced-Form Estimation

Structural Model

- Ride-Share Supply
- Ride-Share Demand and Equilibrium
- Estimation
- Counterfactuals

Structural Model

- Analyze the aggregate equilibrium effects of limiting access to finance on outcomes such as ride quantities, prices, welfare, and substitution patterns across the income distribution
- Examine the welfare and distributional impacts of a key technological limitation of gig economy production, namely, that workers must own the capital
- Model Setup
 - **Supply side:** discrete choice model added with financing and ride-share driving decisions to an individual's vechile ownership decision
 - Demand side: binary choice of whether to utlize the ride-share service

Ride-Share Supply

- A ride-share market $m \in \{1, ..., M\}$ is characterized by a distribution of individual demographics $F_m(D_i)$ and an indicator for ride share presence ϕ_i
- Individual *i*'s demographics D_i map to preferences θ_i
- Individuals preferences determine the individual's three decisions
 - whether to acquire a vehicle
 - Whether to finance the car or pay cash outright
 - Whether to become a ride-share driver

▲ ∃ ► ∃ = \ \ \ \ \ \ \ \ \

Individual's Problem: Indirect Utility

Individual i obtains utility from

• car ownership for durable consumption

$$u_c(\theta_i, \epsilon_i^c) = \beta_i^c + \epsilon_i^c \tag{5}$$

- $\beta_i^c:$ the value of car ownership relative to the outside option of not owning a car
- how the vehicle is financed (cash or loan)

$$u_{f}^{finance}(\theta_{i}, r_{m}, \epsilon_{i}^{f}) = -f_{i}^{0} - \alpha_{i}^{f} r_{m} + \epsilon_{i}^{f},$$

$$u_{f}^{cash} = 0$$
(6)
(7)

- f_i^0 captures financial constraints in reduced form; r_m is the market insterest rate on an auto loan
- Individual is endowed with liquidity l_i , which serves as a threshold to loan

Greg Buchak

Journal of Finance

May 21, 2024

32 / 60

Individual's Problem: Indirect Utility

Individual i obtains utility from

• using the car for income producing activities

$$u_I^R(p_m, \theta_i, \epsilon_i^R) = \alpha_i (w^R(p_m) - w_i) + \gamma_i^R + \epsilon_i^R$$
(8)

$$u_I^T(p_m, \theta_i, \epsilon_i^T) = \alpha_i (w^T - w_i) + \gamma_i^T + \epsilon_i^T$$
(9)

$$u_I^0 = 0 \tag{10}$$

- $w^R(p)$: wage as a function of equilibrium ride-share price p
- $w^T\colon$ prevailing wage for other transportation activities, assumed to be fixed
- w_i : individual's outside-option wage, assumed to be fixed
- α_i : individual's price sensitivity
- γ_i : nonmonetary net benefits like flexible hours

Individual's Problem: Optimal Solution

Financing Choice

$$u_f^*(\theta_i, r_m, \epsilon_i^f) = \begin{cases} u_f^{finance}(\theta_i, r_m, \epsilon_i^f) & l_i < 0\\ \max\{u_f^{finance}(\theta_i, r_m, \epsilon_i^f), 0\} & l_i \ge 0 \end{cases}$$
(11)

Income-producing Choice

$$u_I^*(\mathbf{p}, \theta_i, \phi_m, \epsilon_i^R, \epsilon_i^T) \tag{12}$$

$$= \begin{cases} \max\{0, u_I^T(p_m, \theta_i, \epsilon_i^T)\} & \phi_m = 0\\ \max\{0, u_I^T(p_m, \theta_i, \epsilon_i^T), u_I^R(p_m, \theta_i, \epsilon_i^R)\} & \phi_m = 1 \end{cases}$$
(13)

Assumption: ϵ_i follows a type-I extreme value distribution

Individual's Problem: Optimal Solution

• Car ownership choice

$$u(p_m, \theta_i, r_m, \phi_m, \epsilon_i^c) = u_c(\theta_i, \epsilon_i^c) + Eu_f(\theta_i) + Eu_I(p_m, \theta_i, \phi_m) + \epsilon_i^c$$
(14)

$$\max\{0, u(p_m, \theta_i, r_m, \phi_m, \epsilon_i^c)\}$$
(15)

Assumption: ϵ_i follows a type-I extreme value distribution

ELE SQC

Aggregation

Assume the distribution of θ_i :

$$\theta_i = \bar{\theta} + (D_i - \bar{D})'\Pi \tag{16}$$

- $\bar{\theta}$: $n \times 1$ vector if preference means
- $D_i: d \times 1$ vector of individual demographics⁶
- Π : $n \times d$ matrix mapping demographics to characteristics Π governs

Key set of structral parameters: $\Theta = (\bar{\theta}, \Pi)$

 $^{{}^{6}}D_{i} \sim F_{m}(D_{i})$, measured directly in the data

Aggregation

The fraction of people purchasing a car

$$s_m^{own}(p_m, r_m, \phi_m; \Theta) = \int p(p_m, \theta_i, r_m, \phi_m) dF_m(\theta_i; \Theta)$$
(17)

Obtaining financing, becoming transportation workers, becoming ride-share drivers

$$s_m^f(r_m) = \int p(p_m, \theta_i, r_m, \phi_m) p_f(\theta_i, r_m) dF_m(\theta_i; \Theta)$$
(18)

$$s_m^T(p_m, \phi_m) = \int p(p_m, \theta_i, r_m, \phi_m) p_T(p_m, \theta_i, \phi_m) dF_m(\theta_i; \Theta)$$
(19)

$$s_m^R(p_m,\phi_m) = \int p(p_m,\theta_i,r_m,\phi_m) p_R(p_m,\theta_i,\phi_m) dF_m(\theta_i;\Theta)$$
(20)

Image: A matrix and a matrix

Ride-Share Demand and Equilibrium

Assume: the aggregate demand has a logit form

• Individual's demand function:

$$q(p_m) = \frac{exp(\delta_m^0 - \delta_1 p_m)}{exp(\delta_m^0 - \delta_1 p_m) + 1}$$
(21)

- δ_m^0 : a market-specific constant
- δ_1 : the price sensitivity for ride-share services
- market demand: $q \times M^7$
- market supply: $s_m^R(p_m,\phi_m) \times M$
- Producer Surplus

$$\int_{i} Eu(p_m, \theta_i, r_m, 1) - \int_{i} Eu(p_m, \theta_i, r_m, 0)$$
(22)

 7M is the number of working-age adults

Estimation

- Methodology: GMM (minimizing the distance from moments in the model to their empirical analogs)
- Key parameters: the mapping between demographics D_i and individual preferences + the preference means
 - The only relevant demographic characteristic is outside-option income
 - 2 Only β_i^c (consumption value of car ownership), l_i (access to liquidity) and f_i^0 (the presence of financial constraints) vary directly with income
 - **(3)** Normalize the variance of ϵ_i^c to be 1
- 12 parameters to estimate: $\bar{\theta} = \{\bar{\beta}^c, \bar{f}^0, \bar{\alpha}^f, \bar{l}, \bar{\alpha}, \bar{\gamma}^R, \bar{\gamma}^T\},\$ $\Pi \equiv \{\pi^{\beta^c}, \pi^l, \pi^{f^0}\}, \Sigma \equiv \{\sigma^F, \sigma^I\}$

Estimation

Minimizing the distance from moments in the model to their empirical analogs

- Vechile sales $\rightarrow \bar{\beta}^c$ ZIP codes vary in median incomes $\rightarrow \pi^{\beta^c}$
- Financing shares $\rightarrow \{ \bar{f}^0, \bar{\alpha}^f, \bar{l}, \pi^{\beta^c}, \pi^l, \pi^{f^0} \}$
 - Instrument for interest rates using deposit-weighted bank capitalization in the 7IP code $\rightarrow \bar{\alpha}^f$
- Sales versus financing $\rightarrow \{\bar{f}^0, \bar{l}, \pi^{\beta^c}, \pi^l, \pi^{f^0}\}$
- Transportation worker and Uber driver share $\rightarrow \{\bar{\alpha}, \bar{\gamma}^R, \bar{\gamma}^T\}$
 - Instrument for transportation worker wages using the fraction of workers that walk or bike to work as of 2000
- Minimizing market-level residuals of predicted financing and transportation work $\rightarrow \{\sigma^F, \sigma^I\}$

Estimated Parameters

Panel A: Estimated Parameters

Parameter	Description	$\bar{ heta}$	П
β^c	Own consumption value	3.50 (0.22)	2.35(0.24)
f^0	Nonrate financial cost	-1.10(0.25)	0.005(0.22)
α^f	Rate sensitivity	0.91(0.21)	_
l	Liquidity	0.44(0.25)	1.31(0.18)
γ^T	Other transportation work preference	-3.49(0.02)	-
γ^R	Ride-share driving preference	-3.16(0.01)	-
α	Wage sensitivity	0.06 (0.003)	_
σ^F	Financing shock variance	0.81 (0.10)	_
σ^{I}	Driving shock variance	$0.41\ (0.19)$	_

Panel B: Other Parameters

Parameter	Description	Value	Source
ζ	Uber commission	0.25	Mishel (2018)
ξ	Booking fee	1.55	Mishel (2018)
$f(\delta^1)$	Demand elasticity	0.57	Cohen et al. (2016)

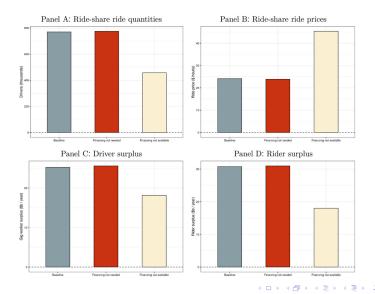
Greg Buchak	Journal of Finance	May 21, 2024	41 / 60
-------------	--------------------	--------------	---------

Model Validation

The change in vehicle sales and loans after ride share entry, both overall and by income level

	e men geren menneme		
Coefficient	Sample	Data	Model
DnD on log sales	All	0.058	0.045
DnD on log sales	Bottom income quartile	0.068	0.063
DnD on log sales	Top income quartile	0.014	0.020
DnD on log loans	All	0.047	0.045
DnD on log loans	Bottom income quartile	0.080	0.066
DnD on log loans	Top income quartile	0.001	0.020

Panel C: Model Validation-Untargeted Moments

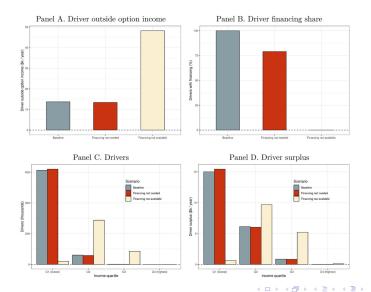

< 4 → <

EL SQA

Counterfactual I: Different Financing Environments

- Financing environments
 - \blacksquare Unnecessary financing: endow all individuals with sufficient liquidity $\bar{l} \to \infty$
 - **②** Unavailable financing: making financing unavailable $\bar{f}^0 \to \infty$

Counterfactual I: Different Financing Environments

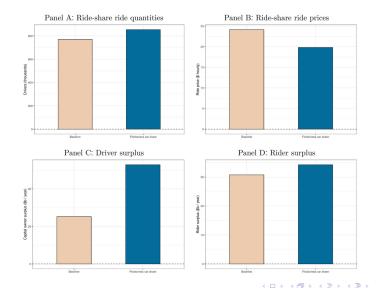


Greg Buchak

May 21, 2024

-

Counterfactual I: Different Financing Environments

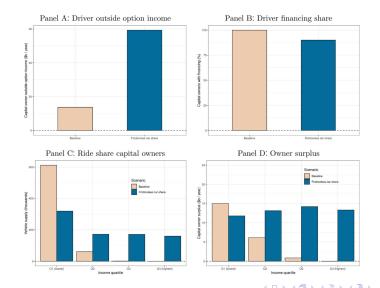

Greg Buchak

May 21, 2024

Counterfactual II: Alternate Ownership Structures

- Alternate ownership structure that allows car owners to rent their vehicles to other drivers for use in the gig economy
 - Allow car owners to hire drivers at the market-level minimum wage \underline{w}_m and earn the residual or to drive themselves
 - Car owner's utility: $\alpha_i(w^R(p_m) \min\{w_i, \underline{w}_m\}) + \gamma_i^R + \epsilon_i^R$
 - Here keep γ_i^R constant

Counterfactual II: Alternate Ownership Structures



Greg Buchak

May 21, 2024

1.2

Counterfactual II: Alternate Ownership Structure

Greg Buchak

May 21, 2024

-

Additional Tests

Sensitivity of Counterfactuals

- Demand elasticities established in Cohen et al. (2016)
- Assumes fixed fees and commissions with values from Mishel (2018)

▶ Outcome

Additional Counterfactuals

- Ride share's growth was aided by the fact that people like owning cars for their own consumption and incidentally choose to supply ride-share services Outcome
- Ride share's growth was aided by a nonmonetary hedonic preference of workers to drive for ride share (due to, for example, flexible working conditions) over similar, less flexible jobs Outcome

900 EIE 4E + 4E

Outline

Introduction

- 2 Institutional Background and Data
- 3 Reduced-Form Estimation

4) Structural Model

- Ride-Share Supply
- Ride-Share Demand and Equilibrium
- Estimation
- Counterfactuals

5 Discussion and Conclusion

E SQA

Contributions

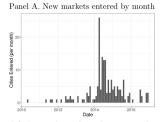
- Main Findings Main Findings
- Contributions Contributions

三日 のへの

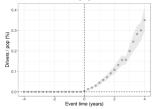
글 제 제 글 제 .

Acknowledgement

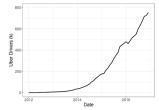
Thank you!

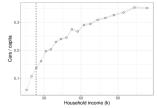

Greg Buchak

Journal of Finance


May 21, 2024

ヨト イヨト ヨヨ のへで


Timing of ride-share entry and ex-ante vehicle ownership


Panel C. Driver share of population around entry

Panel B. Total Uber drivers in the United States

Panel D. Vehicles per household versus household incom

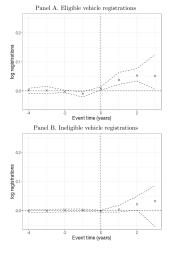
▲ Back

-

Timing of ride-share entry

	Entered		Years to entry	
	(1)	(2)	(3)	(4)
log population	0.229^{***}	0.235^{***}	-0.799^{***}	-0.739^{***}
	(0.021)	(0.025)	(0.071)	(0.088)
Δ population	1.450	0.815	-4.209	-0.498
	(1.261)	(1.436)	(4.508)	(5.173)
HH with mobile broadband (%)	0.754^{**}	0.925^{**}	-5.905^{***}	-5.150***
	(0.332)	(0.377)	(1.202)	(1.457)
Δ % HH with mobile broadband	0.064	0.159	-2.486^{*}	-2.861^{*}
	(0.319)	(0.341)	(1.412)	(1.500)
HH with vehicles (%)	0.364	1.266	-0.619	-2.092
	(1.000)	(1.073)	(3.285)	(3.580)
Δ % HH with vehicles	-1.322	-0.678	8.664	7.715
	(1.326)	(1.447)	(5.872)	(6.216)
Bank share of auto financing	0.009	0.098	-0.955	-0.204
	(0.186)	(0.218)	(0.691)	(0.861)
Other controls	Ν	Υ	Ν	Υ
Observations	470	460	215	214
\mathbb{R}^2	0.320	0.334	0.523	0.542
Note:		*]	p<0.1; **p<0.0	5; ***p<0.01

Vechile Eligibility


 $\log Regs_{mezt} =$

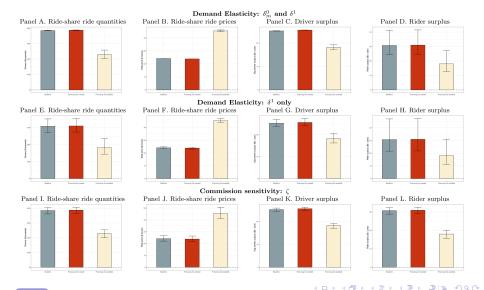
$$\sum_{\tau=-4}^{4} \beta_{\tau} \mathbf{I}(t - ET_z = \tau) \times Low \ Income_z \times Eligible_{me}$$

 $+ \gamma_{tme} + \gamma_{zme} + \epsilon_{mezt}$

 log Regs_{mezt}: the log of the number of new registrations of manufacturer m, of eligibility status e, in ZIP code z, at time t

Back

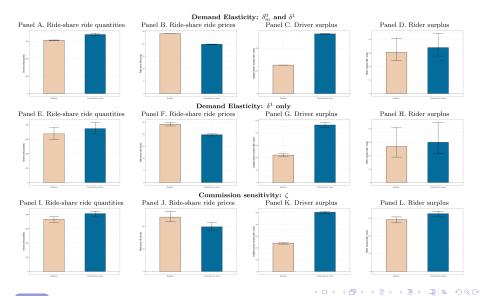
= 990


Placebo Test

	(1)	(2)	(3)
Post	0.0004	0.001	0.001
	(0.002)	(0.002)	(0.003)
Post \times Low income		-0.002	- 1
	-	(0.004)	-
Post \times High transport share	-	-	-0.001
	-	-	(0.004)
ZIP FE	Y	Y	Y
Qtr FE	Y	N	Ν
$Qtr \times Low$ income FE	Ν	Y	Ν
$Qtr \times High transport FE$	Ν	Ν	Υ
Observations	299,332	299,332	299,332
\mathbb{R}^2	0.967	0.967	0.967

	Log	Log new originations		
	(1)	(2)	(3)	
Post	-0.002	-0.001	-0.004	
	(0.002)	(0.002)	(0.002)	
Post \times Low income	-	-0.002	-	
	-	(0.003)	-	
Post \times Transport share	-		0.003	
-	-	-	(0.003)	
ZIP FE	Y	Y	Y	
Qtr FE	Y	N	N	
Qtr × Low income FE	Ν	Y	Ν	
$Qtr \times High transport FE$	Ν	Ν	Y	
Observations	299,332	299,332	299,332	
\mathbb{R}^2	0.974	0.974	0.974	

Sensitivity of Counterfactuals

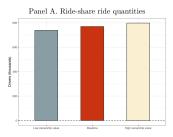


Greg Buchak

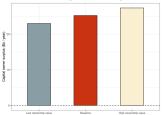
Journal of Finance

May 21, 2024

Sensitivity of Counterfactuals

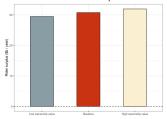


Greg Buchak


Journal of Finance

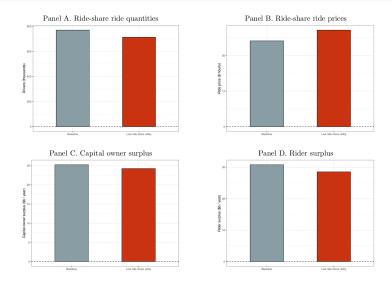
May 21, 2024

Own Value of Vehicle, Aggregates



Panel C. Capital owner surplus

Panel D. Rider surplus


Greg Buchak

May 21, 2024

59 / 60

ELE DOG

Non-monetary Value of Ride Share Driving, Aggregates

-